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Motivation

Constraint satisfaction problem: natural way to express many
combinatorical, mathematical and real world problems

3x + 2y − z − 2u = 1

2x − 2y + 4z + u = −2

−x +
1

2
y − z − u = 0

x + y − 3u = 1

Real benefits from understanding limitations and better algorithms

Fruitful collaboration between computer science, logic, graph theory
and universal algebra, new research directions
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Goals

Computational complexity theory

Basic defitions and methods only
P, NP and NP-complete complexity classes

Constraint satisfaction problem

Introduced for relational structures
Basic reduction theorems
Connection with relational clones

Algebraic approach

Polymorphisms and compatible algebras,
Bounded width algorithm
Few subpowers algorithm
Applications in universal algebra

Theory of absorption (ask Libor Barto)
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Polynomial time computability

W =
⋃∞

n=0{0, 1}n is the set of words over the alphabet {0, 1}. The
length of a word x ∈W is |x |.

Definition

f : W →W is computable in polynomial time if there exist an
algorithm and c , d ∈ N such that for any word x ∈W the algorithm stops
in at most |x |c + d steps and computes f (x).

algorithm: computer program with infinite memory (Turing machine)

encoding of mathematical objects: binary or ASCII text

polynomial bound: masks all differences between various machines
and encodings

examples: basic arithmetic of natural numbers, factoring of
polynomials over Q, linear programming over finite fields
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Decision problems, the complexity class P

Definition

Decision problem or membership problem is a non-empty proper set
L ⊂W of words. The problem L ⊂W is solvable in polynomial time if
its characteristic function

f (x) =

{
1 if x ∈ L,

0 otherwise

is computable in polynomial time. P is the class of polynomial time
solvable decision problems.

“PRIMES is in P” by M. Agrawal, N. Kayal and N. Saxena

examples: class of bipartite graphs, solvable sets of linear equations
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The complexity class NP

Definition

A decision problem L ⊂W is solvable in nondeterministic polynomial
time if there is a polynomial time computable map f : W ×W → {0, 1}
and c, d ∈ N such that

1 if x ∈ L, then there is y ∈W so that |y | ≤ |x |c + d and f (x , y) = 1,

2 if x 6∈ L, then for all y ∈W we have f (x , y) = 0.

NP is the class of nondeterministic poly time solvable decision problems.

f is the verifier, y is the certificate

informally: x ∈ L iff there exists a short certificate y ∈W that can
be verified by a polynomial time algorihm

example: L = {3-colorable graphs}, certificate is g : G→ {0, 1, 2},
verifier checks if adjacent vertices are assigned different colors
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P versus NP problem

P ⊆ NP, but we do not know if P = NP

P versus NP problem: one of the Millennium Prize Problems
proposed by the Clay Mathematics Institute, One million dollar prize

We do not know if NP = coNP where coNP = {W \ L | L ∈ NP }
Integer factorization: in NP∩ coNP but probably not in P, decision
problem encoded as “does n have a prime factor smaller than k?”
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Polynomial time reduction, the NP-complete class

Definition

K ⊂W is polynomial time reducible to L ⊂W if there is a polynomial
time computable map f : W →W so that x ∈ K ⇐⇒ f (x) ∈ L. They
are polynomial time equivalent, if mutually reducible to each other.

polynomial time reducibility is a quasi order

factoring out by polynomial time equivalence we get a poset

minial element is P, we have joins, (what are the exact properties?)

Definition

L ⊂W is NP-complete if every NP-problem is poly time reducible to L.

Boolean formula satisfiability (SAT, 3-SAT)

graph 3-coloring, solvable sudoku, graphs with Hamiltonian path, etc.

Ladner’s theorem: if NP 6= P, then there are intermediate classes.
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Relational structures

Definition

A = (A;R) is a relational structure, where for each relational symbol
% ∈ R of arity n ∈ N we have a relation %A ⊆ An. Directed graph is a
relational structure G = (G ;→) with a single binary relation →G⊆ G 2.

Definition

A homomorphism from A = (A;R) to B = (B;R) is a map f : A→ B
that preserves tuples, i.e.

(a1, . . . , an) ∈ %A =⇒ (f (a1), . . . , f (an)) ∈ %B.

We write A→ B if there is a homomorphism from A to B.

isomorphism: bijective and both f and f −1 are homomorphisms

Miklós Maróti (Vanderbilt and Szeged) The Constraint Satisfaction Problem 2012. September 2–7. 9 / 37



Constraint satisfaction problem

Definition

For a finite relational structure B we define

CSP(B) = {A | A→ B }.

CSP( s ss�A ) is the class of 3-colorable graphs

CSP( ss) is the class of bipartite graphs

Dichotomy Conjecture (T. Feder, M. Y. Vardi, 1993)

For every finite structure B the membership problem for CSP(B) is in P or
NP-complete.

The dichotomy conjecture is proved for example when B
is an undirected graph (P. Hell, J. Nešeťril),

has at most 3 elements (A. Bulatov)

Open for directed graphs.
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Example: solving a system of equations

(∃x , y , z ∈ Z5)(x + y = z ∧ x + x = y ∧ z = 1)

m
(∃x , y , z ∈ Z5)((x , y , z) ∈ F1 ∧ (x , x , y) ∈ F1 ∧ z ∈ F2),

where F1 = { (x , y , z) ∈ Z3
5 : x + y = z } and F2 = {1}.
m

(∃f : {1, 2, 3} → Z5)((f (1), f (2), f (3)) ∈ F1 ∧
(f (1), f (1), f (2)) ∈ F1 ∧ f (3) ∈ F2)

m
∃f : A→ B,

where A = ({1, 2, 3}; E1,E2), B = (Z5; F1,F2)

E1 = { (1, 2, 3), (1, 1, 2) }, E2 = {3}.
m

A ∈ CSP(B)

Miklós Maróti (Vanderbilt and Szeged) The Constraint Satisfaction Problem 2012. September 2–7. 11 / 37



Example: solving a system of equations

(∃x , y , z ∈ Z5)(x + y = z ∧ x + x = y ∧ z = 1)

m
(∃x , y , z ∈ Z5)((x , y , z) ∈ F1 ∧ (x , x , y) ∈ F1 ∧ z ∈ F2),

where F1 = { (x , y , z) ∈ Z3
5 : x + y = z } and F2 = {1}.
m

(∃f : {1, 2, 3} → Z5)((f (1), f (2), f (3)) ∈ F1 ∧
(f (1), f (1), f (2)) ∈ F1 ∧ f (3) ∈ F2)

m
∃f : A→ B,

where A = ({1, 2, 3}; E1,E2), B = (Z5; F1,F2)

E1 = { (1, 2, 3), (1, 1, 2) }, E2 = {3}.
m

A ∈ CSP(B)
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Adding the equality relation

Lemma

Let C = (B;R∪ {ε}) be the extension of B = (B;R) with the relation
ε = { (b, b) | b ∈ B }. Then CSP(B) is poly time equivalent with CSP(C).

Proof.

CSP(B) is polynomial time reducible to CSP(C)

for A = (A;R) we construct A′ = (A′;R∪ {ε}) such that
A ∈ CSP(B) ⇐⇒ A′ ∈ CSP(C)
let A′ = A and εA

′
= ∅

CSP(C) is polynomial time reducible to CSP(B)

for A = (A;R∪ {ε}) we construct A′ = (A′;R) such that
A ∈ CSP(C) ⇐⇒ A′ ∈ CSP(B)
let ϑ be the equivalence relation generated by εA

let A′ = A/ϑ and %A
′

= (%A)/ϑ
if f : A→ C, then ϑ ⊆ ker f and f ′ : A′ → B, f ′(x/ϑ) = f (x) works
if g : A′ → B, then g ′ : A→ C, g ′(x) = g(x/ϑ) works
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Adding projections and products (and intersections)

Lemma

Let C = (B;R∪ {γ}) be the extension of B = (B;R) with a relation γ
that is a projection of β ∈ RB. Then CSP(B) is polynomial time
equivalent with CSP(C).

Idea: We let A′ = (A′;R) be the same as A = (A;R∪ {γ}), except for
each tuple (a1, . . . , ak) ∈ γA we add n − k new elements xk+1, . . . , xn to
A′ and add the tuple (a1, . . . , ak , xk+1, . . . , xn) to the relation βA

′
.

Lemma

Let C = (B;R∪ {γ}) be the extension of B = (B;R) with a relation
γ = α× β for α, β ∈ RB. Then CSP(B) is polynomial time equivalent
with CSP(C).

Idea: We let A′ = (A′;R) be the same as A = (A;R∪ {γ}), except for
each tuple (a1, . . . , an+m) ∈ γA we add the tuple (a1, . . . , an) to αA′

and
the tuple (an+1, . . . , an+m) to βA

′
.
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Relational clones

Definition

A set Γ of relations over a fixed set is a relational clone if it contains the
equality relation and is closed under intersections, projections, products.
The relational clone generated by Γ is denoted by 〈Γ〉.

Theorem

Let B = (B;R) and C = (B;S) be finite relational structures on the same
base set. If 〈RB〉 ⊆ 〈SC〉, then CSP(B) poly time reducible to CSP(C).

Proof.

Let D = (B;R∪ S) be the extension of both B and C. Clearly, CSP(B) is
polynomial time reducible to CSP(D). Since RB ⊆ 〈SC〉, we get by the
previous lemmas, that CSP(D) is poly time equivalent with CSP(C).

We can assign an algorithmic complexity class to finitely generated
relational clones (or functional clones)!
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Reduction to cores

→ is a quasi order on the set of finite structures of same signature

Lemma

If B↔ C, then CSP(B) = CSP(C).

Lemma

Let C be a minimal member of the ↔ class of a finite structure B. Then

every endomorphism of C is an automorphism,

C is uniquely determined up to isomorphism, and

C is isomorphic to a substructure of B.

We say that C is a core if it has no proper endomorphism

Theorem

Let B be a finite relational structure and C be its core. Then
CSP(B) = CSP(C).
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Adding the singleton constant relations to cores

Lemma

Let C = (B;R∪{ δb | b ∈ B }) be the extension of a core B = (B;R) with
δb = {b} for b ∈ B. Then CSP(B) is poly time equivalent with CSP(C).

Sketch of proof.

Fix an ordering B = {b1, . . . , bk} and consider the k-ary relation

σB = { (f (b1), . . . , f (bk)) | f : B→ B }.

σB is in 〈RB〉, so we may assume, that R already contains σ and the
equality relation ε. For A = (A;R) define A′ = (A ∪̇ B;R) as

εA
′

= εA ∪ { (a, b) | b ∈ B, a ∈ δAb },

σA
′

= σA ∪ {(b1, . . . , bk)}, and

%A
′

= %A for all % ∈ R \ {σ, ε}.
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Finding solutions, limiting the signature

Theorem

If CSP(B) is in P, then there exists a polynomial time algorithm that, for a
given A, finds a homomorphism f : A→ B or proves that no such
homomorphism exists.

Theorem (T. Feder, M. Y. Vardi, 1993)

For every finite relational structure B there exists a directed graph G such
that CSP(B) is polynomial time equivalent with CSP(G).

Original proof “destroys algebraic structure”, there is a new proof by
J. Bulin, D. Delić, M. Jackson and T. Niven, that preserve most linear
idempotent Maltsev conditions (but not Maltsev operations).

Theorem

For every finite relational structure B there exists a structure C with only
binary relations so that CSP(B) is poly time equivalent with CSP(G).
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Finite duality

set of finite relational structures modulo ↔ is a partially ordered set

isomorphic to the set of core isomorphism types

minimal [maximal] element: 1-element structure, with empty [full]
relations

join: disjoint union, meet: direct product,

satisfies distributive laws, join irreducible = connected

Heyting algebra (relatively pseudocomplemented)

exponentiation: BA is defined on BA as (f1, . . . , fn) ∈ %BA
iff

(a1, . . . , an) ∈ %A =⇒ (f1(a1), . . . , fn(an)) ∈ %B.

B ∧ A ≤ C ⇐⇒ CB×A = (CB)A has a loop ⇐⇒ A ≤ CB

if B is join irreducible with lower cover C, then (B,CB) is a dual pair

Theorem (J. Nešeťril, C. Tardif, 2010)

Let B be a finite connected core structure. Then B has a dual pair D, i.e.
CSP(B) = {A | D 6→ A }, if and only if B is a tree.
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Algebraic approach: polymorphisms

Definition

A polymorphism of B is a homomorphism p : Bn → B, that is an n-ary
map that preserves the relations of B, e.g. for a directed graph B = (B;→)

a1 → b1, . . . , an → bn =⇒ p(a1, . . . , an)→ p(b1, . . . , bn).

Pol(B) = { p | p : Bn → B } is the clone of polymorphisms.

if 〈B〉 ⊆ 〈C〉 then CSP(B) is poly time reducible to CSP(C)

{ 〈B〉 | CSP(B) ∈ P } is a filter in the poset of finitely generated
relational clones, { 〈B〉 | CSP(B) ∈ NP-complete } is an ideal

CSP(B) is in P if B has nice polymorphisms

Question

Which polymorphisms guarantee that CSP(B) is in P?

Miklós Maróti (Vanderbilt and Szeged) The Constraint Satisfaction Problem 2012. September 2–7. 19 / 37



Constraint satisfaction problem for algebras

Definition

Let B = (B;F) be a finite algebra. (V , C) is an instance for CSP(B) if

V is a finite set of variables,

C is a finite set of constraints,

where each constraint (S ,R) ∈ C has

a scope S ⊆ V , and
a constraint relation R ≤ BS .

A map f : V → B is a solution if f |S ∈ R for all (S ,R) ∈ C. We define
CSP(B) to be the set of all solvable instances.

Theorem

CSP(B) is polynomial time equivalent with a subproblem of CSP(B) where
all constraint relations must be in RB (after suitable ordering of elements).
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Local and global reducibility

Definition

A relational structure B = (B;R) and an algebra B = (B;F) are
compatible if FB ⊆ Pol(B), or alternatively, RB ⊆ Inv(B).

Definition

CSP(B) is locally polynomial time reducible to CSP(C) if for every
relational structure B compatible with B there is a structure C compatible
with C such that CSP(B) is polynomial time reducible to CSP(C).

Subtle difference between local and regular reducibility.

Theorem

Let B and C be finite algebras. If V(B) ⊆ V(C), then CSP(B) is locally
polynomial time reducible to CSP(C).
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Taylor terms

Theorem (D. Hobby, R. McKenzie)

For a locally finite variety V the followings are equivalent:

V omits type 1 (tame congruence theory),

V has a Taylor term operation:

t(x , x , . . . , x) ≈ x ,

t(x ,−, . . . ,−) ≈ t(y ,−, . . . ,−),

t(−, x , . . . ,−) ≈ t(−, y , . . . ,−),

...

t(−,−, . . . , x) ≈ t(−,−, . . . , y).

Theorem (W. Taylor, 1977)

Every idempotent, locally finite variety without a Taylor term contains a
two-element algebra in which every operation is a projection.
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The NP-complete case

Theorem (A. Bulatov, P. Jeavons, A. Krokhin)

If B is a finite core relational structure without a Taylor polymorphism,
then CSP(B) is NP-complete.

Proof.

B is a core, so we may assume {b} is a relation for all b ∈ B

the algebra B = (B; Pol(B)) is idempotent

the variety V(B) contains a two-element trivial algebra C

3-SAT is poly equivalent with CSP(C) for some C compatible with C

CSP(C) ≤ CSP(D) ≤ CSP(B) for some D compatible with B

Algebraic Dichotomy Conjecture

If B is a core and has a Taylor polymorphism, then CSP(B) is in P.
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CSP for semilattice algebras

Theorem

Let B be a finite algebra with a semilattice term operation. Then CSP(B)
is solvable in polynomial time.

Sketch of proof.

Take an instance (V ; C) for CSP(B)

Add the ({x},B) constraint for each variable x ∈ V

For each scope S create a single constraint relation RS ≤ BS

Modify the instance until πx(RS) = R{x} for all scope S and x ∈ S :

R′
{x} = R{x} ∩ πx(RS)

R′
S = { f ∈ RS | f (x) ∈ R{x} }.

The new instance has the same set of solutions as the original

Define g : V → B, g(x) =
∧

R{x} ∈ R{x}

For (S ,RS) and x ∈ S we have fx ∈ RS with fx(x) = g(x)

Take f =
∧

x∈S fx ∈ RS and verify that g |S = f , so g is a solution
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Local consistency algorithm, CSP for NU algebras

Definition

An instance (V ; C) for CSP(B) is (k , l)-consistent, if

for each scope S it has a unique constraint (S ;RS),

it contains a constraint for each scope S ⊆ V , |S | ≤ l , and

πS(RT ) = RS whenever S ⊆ T are scopes and |S | ≤ k .

Theorem

For every instance (V ; C) for CSP(B) a (k , l)-consistent instance (V , C′)
can be computed in polynomial time that has the same set of solutions.

Theorem

Let B be a finite algebra with a k-ary near-unanimity term operation.
Then CSP(B) is solvable in polynomial time.

apply the (k − 1, k) local consistency algorithm
the instance has a solution iff all constraint relations are nonempty
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Bounded width

Definition

A relational structure B has bounded width if there exist k ≤ l such that
every nonempty (k, l)-consistent instance for CSP(B) has a solution.

If B has bounded width, then CSP(B) is solvable in polynomial time by the
local consistency algorithm.

Theorem (B. Larose, L. Zádori, 2007)

If a core relational structure B has bounded width, then the corresponding
algebra B = (B; Pol(B)) generates congruence meet-semidistributive
variety.

Theorem (L. Barto, M. Kozik, 2009)

A core relational structure B has bounded width if and only if the
corresponding algebra B = (B; Pol(B)) generates congruence
meet-semidistributive variety.
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CSP for Maltsev algebras

Definition

Let B be an algebra with a Maltsev term p, and n ∈ N.

index is an element of {1, . . . , n} × B2,

an index (i , a, b) is witnessed in Q ⊆ Bn if there exist f , g ∈ Q so
that f1 = g1, . . . , fi−1 = gi−1 and fi = a, gi = b

a compact representation of a subpower R ≤ Bn is a subset Q ⊆ R
that witnesses the same set of indices as R and |Q| ≤ 2|B|2 · n.

Lemma

The compact representation Q of R ≤ Bn generates R as a subalgebra.

Idea: take f ∈ R and its best approximation g ∈ Sg(Q)

let i be the smallest index where fi 6= gi
take witnesses f ′, g ′ ∈ Q for the index (i , f (i), g(i))

but then p(f ′, g ′, g) is a better approximation of f
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CSP for Maltsev algebras

Lemma

The 2-projections of R ≤ Bn are polynomial time computable from the
compact representation of R.

Idea: generate as usual, but keep track of representative tuples only

Lemma

For c1, . . . , ck ∈ B the compact representation of the subpower R′ =
{ f ∈ R | f1 = c1, . . . , fk = ck } is poly time computable from that of R.

Idea: we prove it for k = 1 and use induction

take f , g ∈ R′ witnesses for (i , a, b) in R′

then we have witnesses f ′, g ′ ∈ Q for (i , a, b), and

h ∈ Sg(Q) such that h1 = c and hi = a

thus h, p(h, f ′, g ′) ∈ Sg(Q) witness (i , a, b) in R′
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CSP for Maltsev algebras

Lemma

For c ∈ B and k ≤ n the compact representation of the subpower R′ =
{ f ∈ R | fk = c } is polynomial time computable from that of R.

Lemma

For 1 ≤ k , l ≤ n the compact representation of the subpower R′ =
{ f ∈ R | fk = fl } is polynomial time computable from that of R.

Theorem

Let B be a finite Maltsev algebra. Then the compact representation of the
product, projection and intersection of subpowers is computable in
polynomial time from the compact representations of the arguments.

Theorem (A. Bulatov, V. Dalmau, 2006)

Let B be a finite algebra with a Maltsev term operation. Then CSP(B) is
solvable in polynomial time.
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CSP for few subpower algebras

Definition

A finite algebra B has few subpowers, if the number of subalgebras of Bn

is bounded by 2n
a+b for some fixed numbers a, b ∈ N.

Theorem (Berman, Idziak, Marković, McKenzie, Valeriote, Willard)

A finite algebra B has few subpowers iff it has a k-edge term operation

p(y , y , x , x , . . . , x) ≈ x ,

p(x , y , y , x , . . . , x) ≈ x ,

p(x , x , x , y , . . . , x) ≈ x ,

. . .

p(x , x , x , x , . . . , y) ≈ x .

Theorem (Idziak, Marković, McKenzie, Valeriote, Willard, 2010)

Let B be a finite algebra with a k-edge term operation. Then CSP(B) can
be solved in polynomial time.
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CSP for smooth digraphs

Theorem (McKenzie, Maróti, 2007)

For a locally finite variety has a Taylor term if and only if it has a weak
near-unanimity term operation:

t(y , x , . . . , x) ≈ · · · ≈ t(x , . . . , x , y) and t(x , . . . , x) ≈ x .

Theorem (L. Barto, M. Kozik, 2009)

Let G be a core directed graph with no sources and sinks. If G has a weak
near-unanimity polymorphism, then it is a disjoint union of directed circles.
So the dichotomy conjecture holds for digraphs with no sources and sinks.

The next classical theorem is now an easy corollary:

Theorem (P. Hell, J. Nešeťril, 1990)

Let G be an undirected graph. If G is bipartite, then CSP(G) is in P,
otherwise it is NP-complete.
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Siggers term

Theorem (M. Siggers, 2008; K. Kearnes, P. Markovic, R. McKenzie)

A locally finite variety has a Taylor term if and only if it has Siggers term

t(x , x , x , x) ≈ x and t(x , y , z , y) ≈ t(y , z , x , x).

Proof.

let G = F3(V) be the 3-generated free algebra

let G = (G ;→) be the digraph →G= Sg({(x , y), (y , z), (z , x), (y , x)})
whose edge relation is generated by these edges

s s
s
-��

�
�
��A
A
A
AUy

z

x

no sources and sinks: t(x , y , z)→ t(y , z , x)→ t(z , x , y)→ t(x , y , z)

because of the generating edges, the core of G must contain a loop

the loop edge is t((x , y), (y , z), (z , x), (x , z)) for some term t.
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Further algebraic results

Theorem (E. Aichinger, P. Mayr, R. McKenzie, 2011)

There are countable many Maltsev clones on a finite set. The same holds
for clones with an edge operation.

Theorem

A finite algebra generates a congruence meet-semidistributive variety if
and only if it has a ternary and a 4-ary weak near-unanimity operation s
and t such that t(x , x , y) ≈ s(x , x , x , y).

Theorem (L. Barto, 2011)

If a finite relational structure has Jónsson polymorphisms, then it has a
near-unanimity polymorphism.

Theorem (L. Barto)

If a finite relational structure has Gumm polymorphisms (congruence
modularity), then it has an edge polymorphism.
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Thank you!
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Miklós Maróti (Vanderbilt and Szeged) The Constraint Satisfaction Problem 2012. September 2–7. 35 / 37
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Maltsev on top Algorithm

Theorem (M. Maróti)

Suppose, that each algebra B ∈ B has a congruence β ∈ Con(B) such that
B/β has few subpowers and each β block has bounded width. Then we
can solve the constraint satisfaction problem over B in polynomial time.

Proof Overview.

Take an instance A = {Bi ,Rij | i , j ∈ V } and βi ∈ Con(Bi )

Consider extended constraints that not only limit the projection of
the solution set to the {i , j} coordinates, but also to

∏
v∈V Bv/βv

Use extended (2,3)-consistency algorithm

Obtain a solution modulo the β congruences so that the restriction of
the problem to the selected congruence blocks is (2,3)-consistent.

By the bounded width theorem there exists a solution.
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